Versatile Knowledge : Latest Inventions - Quantum Code

Google  has achieved a phenomenal victory in breaking the Quantum code which is literally a massive break through in the last one thousand years.Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.


Quantum convolutional coding theory offers a different paradigm for coding quantum information. The convolutional structure is useful for a quantum communication scenario where a sender possesses a stream of qubits to send to a receiver. The encoding circuit for a quantum convolutional code has a much lower complexity than an encoding circuit needed for a large block code. It also has a repetitive pattern so that the same physical devices or the same routines can manipulate the stream of quantum information.
Quantum convolutional stabilizer codes borrow heavily from the structure of their classical counterparts. Quantum convolutional codes are similar because some of the qubits feed back into a repeated encoding unitary and give the code a memory structure like that of a classical convolutional code. The quantum codes feature online encoding and decoding of qubits. This feature gives quantum convolutional codes both their low encoding and decoding complexity and their ability to correct a larger set of errors than a block code with similar parameters.



The operation of a convolutional stabilizer code is as follows. The protocol begins with the sender encoding a stream of qubits with an online encoding circuit such as that given in (Grassl and Roetteler 2006). The encoding circuit is online if it acts on a few blocks of qubits at a time. The sender transmits a set of qubits as soon as the first unitary finishes processing them. The receiver measures all the generators in  and corrects for errors as he receives the online encoded qubits. He finally decodes the encoded qubits with a decoding circuit. The qubits decoded from this convolutional procedure should be error free and ready for quantum computation at the receiving end.
finite-depth circuit maps a Pauli sequence with finite weight to one with finite weight (Ollivier and Tillich 2004). It does not map a Pauli sequence with finite weight to one with infinite weight. This property is important because we do not want the decoding circuit to propagate uncorrected errors into the information qubit stream (Johannesson and Zigangirov 1999). A finite-depth decoding circuit corresponding to the stabilizer  exists by the algorithm given in (Grassl and Roetteler 2006).


If it is really broken then the world of computing will change for ever.

I guess it an asset for the inquisitive minds to posses this versatile knowledge 





No comments:

Post a Comment

Amazing Invention- Bionic Mushroom will produce electricity

This is one of the greatest of inventions of the present world, This gizmo can produce  electricity  Experiments like this...